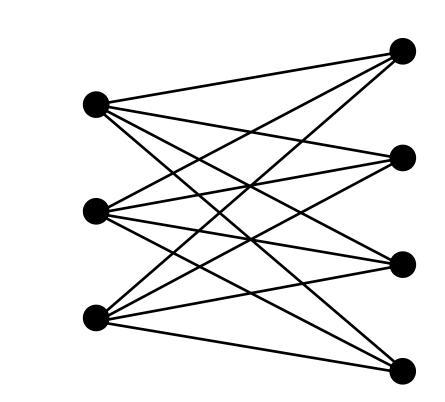
Lecture 35

Planar Graphs (contd.)

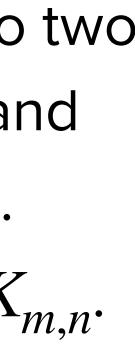
Complete Bipartite Graph

Example:

 $K_{3,4}$



Definition: A **complete bipartite graph** is a graph whose vertices can be partitioned into two subsets V_1 and V_2 such that no edge has both the vertices (endpoints) in the same set and every possible edge that could connect vertices in different subsets is part of the graph. A complete bipartite graph with partitions of size $|V_1| = m$ and $|V_2| = n$, is denoted $K_{m,n}$.



K_{3.3} is Non-Planar

Theorem: $K_{3,3}$ is non-planar. Then,

$$m_1 + m_2 + m_3 + m_4 + m_5 =$$

All $b_i s$ are cycles because there is no vertex of degree 1.

- **Proof:** Suppose $K_{3,3}$ is planar. Since $K_{3,3}$ has 6 vertices and 9 edges, it must have 5 faces. Let b_1, b_2, b_3, b_4 , and b_5 be the boundaries of the 5 faces and m_1, m_2, m_3, m_4 and m_5 be the length of the boundaries, respectively, with respect to some planar embedding.
 - = 18 (: every edge appears twice on boundaries) But cycles of length 3 are not possible because $K_{3,3}$ is a bipartite graph.
 - Hence, $m_i \ge 4$, which leads to a contradiction as $m_1 + m_2 + m_3 + m_4 + m_5 \ge 20$

A Necessary Condition for Non-Planarity

Theorem: If G is a planar graph of $n \ge 3$ vertices and m edges, then $m \le 3n - 6$.

Proof: Assume G is connected.

boundary of the face f_i .

 $m_1 + m_2 + \ldots + m_k = 2m$

 $m + k \le 3n - 6 \implies m \le 3n - 6$

Let $f_1, f_2, f_3, \ldots, f_k$ be the faces of G (w.r.t an embedding) and m_i be the length of the

 $3k \le 2m$ (: each boundary's length ≥ 3) $3(2-n+m) \le 2m$ (from Euler's theorem) m < 3n - 6Will it not disturb planarity? If the graph is not connected, connect it by adding more, say k, edges. Then,

More on Planar Graphs

Corollary: Every planar graph contains a vertex of degree 5 or less. **Proof:** Let G be a planar graph and suppose every vertex is of degree at least 6 or more. Let *n* be the number of vertices and *m* be the number of edges. Let d_i be the degree if the *i*th vertex. Then,

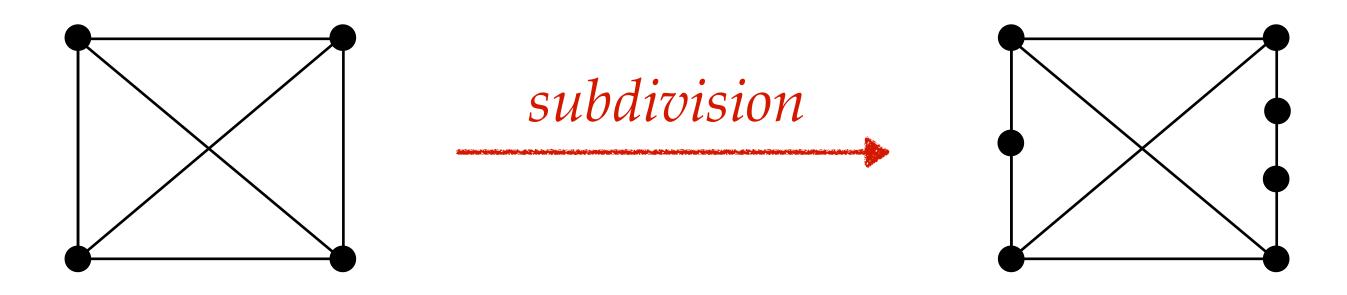
$$d_1 + d_2 + \ldots + d_n = 2m \implies 6n \le 2m \implies 3n \le m$$

But $m \leq 3n - 6$ for planar graphs. Hence, a contradiction.

Corollary: K_5 is non-planar. **Proof:** It does not satisfy the $m \leq 3n - 6$ criteria for planarity.

Kuratowski's Theorem

of one or more edges.



Kuratowski's Theorem:

Definition: A subdivision of a graph is a graph formed by subdividing its edges into paths

A graph is planar if and only if it does not contain a subdivision of K_5 or $K_{3,3}$ as a subgraph.

